Effect of Object Orientation Angle on T2* Image and Reconstructed Magnetic Susceptibility: Numerical Simulations

نویسندگان

  • Zikuan Chen
  • Vince Calhoun
چکیده

The magnetic field resulting from material magnetization in magnetic resonance imaging (MRI) has an object orientation effect, which produces an orientation dependence for acquired T2* images. On one hand, the orientation effect can be exploited for object anisotropy investigation (via multi-angle imaging); on the other hand, it is desirable to remove the orientation dependence using magnetic susceptibility reconstruction. In this report, we design a stick-star digital phantom to simulate multiple orientations of a stick-like object and use it to conduct various numerical simulations. Our simulations show that the object orientation effect is not propagated to the reconstructed magnetic susceptibility distribution. This suggests that accurate susceptibility reconstruction methods should be largely orientation independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Morphological Mismatch Between Magnetic Susceptibility Source and T2* Image

BACKGROUND AND PURPOSE Recent research has shown that a T2* image (either magnitude or phase) is not identical to the internal spatial distribution of a magnetic susceptibility (χ) source. In this paper, we examine the reasons behind these differences by looking into the insights of T2*-weighted magnetic resonance imaging (T2*MRI) and provide numerical characterizations of the source/image mism...

متن کامل

White matter fiber orientation mapping based on T2* anisotropy

Introduction Recent studies have shown that T2 relaxation may be anisotropic [1-4]. This anisotropy has been attributed to the microscopic (sub-voxel level) anisotropic distribution of susceptibility perturbers. In white matter fiber bundles, these anisotropic pertubations could originate from compounds such as lipid and ferritin that may align with axons, and could generate magnetic field vari...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect.

OBJECTIVE The purpose of this study was to perform a quantitative evaluation of the effect of static magnetic field orientation on cartilage transverse (T2) relaxation time in the intact living joint and to determine the magnitude of the magic angle effect on in vivo femoral cartilage. MATERIALS AND METHODS Quantitative T2 maps of the femoral-tibial joint were obtained in eight asymptomatic m...

متن کامل

The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging.

This review provides a formalism for understanding magic angle effects in clinical studies. It involves consideration of the fiber-to-field angle for linear structures such as tendons, ligaments, and peripheral nerves, disc-like and circular structures such as menisci and labra, as well as complex three-dimensional structures. There may be one or more fiber types with different orientations wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013